Ice Growth Inhibition in Antifreeze Polypeptide Solution by Short-Time Solution Preheating
نویسندگان
چکیده
The objective of this study is to enhance the inhibition of ice growth in the aqueous solution of a polypeptide, which is inspired by winter flounder antifreeze protein. We carried out measurements on unidirectional freezing of the polypeptide solution. The thickness of the solution was 0.02 mm, and the concentration of polypeptide was varied from 0 to 2 mg/mL. We captured successive microscopic images of ice/solution interfaces, and measured the interface velocity from the locations of tips of the pectinate interface in the images. We also simultaneously measured the temperature by using a small thermocouple. The ice/solution interface temperature was defined by the temperature at the tips. It was found that the interface temperature was decreased with an increasing concentration of polypeptide. To try varying the activity of the polypeptide, we preheated the polypeptide solution and cooled it before carrying out the measurements. Preheating for 1-5 hours was found to cause a further decrease in the interface temperature. Furthermore, wider regions of solution and ice with inclined interfaces in the pectinate interface structure were observed, compared with the case where the solution was not preheated. Thus, the ice growth inhibition was enhanced by this preheating. To investigate the reason for this enhancement, we measured the conformation and aggregates of polypeptide in the solution. We also measured the local concentration of polypeptide. It was found that the polypeptide aggregates became larger as a result of preheating, although the polypeptide conformation was unchanged. These large aggregates caused both adsorption to the interface and the wide regions of supercooled solution in the pectinate interface structure.
منابع مشابه
Refined solution structure of type III antifreeze protein: hydrophobic groups may be involved in the energetics of the protein-ice interaction.
BACKGROUND Antifreeze proteins are found in certain fish inhabiting polar sea water. These proteins depress the freezing points of blood and body fluids below that of the surrounding sea water by binding to and inhibiting the growth of seed ice crystals. The proteins are believed to bind irreversibly to growing ice crystals in such a way as to change the curvature of the ice-water interface, le...
متن کاملIsolation and characterization of a novel antifreeze protein from carrot (Daucus carota).
A modified assay for inhibition of ice recrystallization which allows unequivocal identification of activity in plant extracts is described. Using this assay a novel, cold-induced, 36 kDa antifreeze protein has been isolated from the tap root of cold-acclimated carrot (Daucus carota) plants. This protein inhibits the recrystallization of ice and exhibits thermal-hysteresis activity. The polypep...
متن کاملComputational study on ice growth inhibition of Antarctic bacterium antifreeze protein using coarse grained simulation.
Antarctic bacterium antifreeze proteins (AFPs) protect and support the survival of cold-adapted organisms by binding and inhibiting the growth of ice crystals. The mechanism of the anti-freezing process in a water environment at low temperature of Antarctic bacterium AFPs remains unclear. In this research, we study the effects of Antarctic bacterium AFPs by coarse grained simulations solution a...
متن کاملStructure-function relationship in a winter flounder antifreeze polypeptide. II. Alteration of the component growth rates of ice by synthetic antifreeze polypeptides.
Using synthetic analogs of an alpha-helical winter flounder antifreeze polypeptide (AFP) we investigated some important molecular details of the mechanism of action of this AFP. Of the seven peptides synthesized, all but one were amino-terminal deletions of the native AFP. Three of the seven synthetic analogs possessed the same antifreeze activity as the native polypeptide; the other analogs we...
متن کاملStructure-function relationships in an antifreeze polypeptide. The role of neutral, polar amino acids.
An alanine-rich, alpha-helical antifreeze polypeptide (AFP) from the winter flounder and seven analogs with variations in the arrangement of neutral, polar amino acids were synthesized. Circular dichroism studies determined that all of the peptides, except for one containing a proline residue, were essentially 100% alpha-helical. Freezing point depression data, analyzed by three methods, showed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2016